MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S17600 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
8.6 to 11
Fatigue Strength, MPa 110
300 to 680
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 260
560 to 880
Tensile Strength: Ultimate (UTS), MPa 420
940 to 1490
Tensile Strength: Yield (Proof), MPa 350
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
890
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 850
850 to 4390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
34 to 54
Strength to Weight: Bending, points 42
28 to 37
Thermal Diffusivity, mm2/s 62
4.1
Thermal Shock Resistance, points 19
31 to 50

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
71.3 to 77.6
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.2
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.1 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0.4 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0