MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S21800 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
40
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 260
510
Tensile Strength: Ultimate (UTS), MPa 420
740
Tensile Strength: Yield (Proof), MPa 350
390

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 210
900
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 550
1310
Specific Heat Capacity, J/kg-K 880
500
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 2.9
7.5
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
250
Resilience: Unit (Modulus of Resilience), kJ/m3 850
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 40
27
Strength to Weight: Bending, points 42
24
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
59.1 to 65.4
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0.9 to 1.2
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.1 to 0.25
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0