MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S28200 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
260
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
45
Fatigue Strength, MPa 110
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 260
610
Tensile Strength: Ultimate (UTS), MPa 420
870
Tensile Strength: Yield (Proof), MPa 350
460

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
900
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 22
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
330
Resilience: Unit (Modulus of Resilience), kJ/m3 850
540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
26
Strength to Weight: Axial, points 40
32
Strength to Weight: Bending, points 42
27
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 1.9 to 2.7
0.75 to 1.3
Iron (Fe), % 0.9 to 1.3
57.7 to 64.1
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0.9 to 1.2
0
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.1 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0