MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S30435 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
160
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
51
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 260
370
Tensile Strength: Ultimate (UTS), MPa 420
510
Tensile Strength: Yield (Proof), MPa 350
170

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 210
900
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
210
Resilience: Unit (Modulus of Resilience), kJ/m3 850
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 42
18
Thermal Diffusivity, mm2/s 62
4.2
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 1.9 to 2.7
1.5 to 3.0
Iron (Fe), % 0.9 to 1.3
66.9 to 75.5
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.9 to 1.2
7.0 to 9.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.1 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0