MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. S44700 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.8
23
Fatigue Strength, MPa 110
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Shear Strength, MPa 260
380
Tensile Strength: Ultimate (UTS), MPa 420
600
Tensile Strength: Yield (Proof), MPa 350
450

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 22
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 850
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
21
Strength to Weight: Bending, points 42
20
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 1.9 to 2.7
0 to 0.15
Iron (Fe), % 0.9 to 1.3
64.9 to 68.5
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0.9 to 1.2
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.1 to 0.25
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0