MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. ACI-ASTM CF3M Steel

2618A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.5
55
Fatigue Strength, MPa 120
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 440
520
Tensile Strength: Yield (Proof), MPa 410
260

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 230
990
Melting Completion (Liquidus), °C 670
1440
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.4
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
18
Strength to Weight: Bending, points 44
18
Thermal Diffusivity, mm2/s 59
4.3
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 1.8 to 2.7
0
Iron (Fe), % 0.9 to 1.4
59.9 to 72
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.8 to 1.4
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0