MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. EN 1.4361 Stainless Steel

2618A aluminum belongs to the aluminum alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5
43
Fatigue Strength, MPa 120
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 260
440
Tensile Strength: Ultimate (UTS), MPa 440
630
Tensile Strength: Yield (Proof), MPa 410
250

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 230
940
Melting Completion (Liquidus), °C 670
1370
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.4
3.6
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
23
Strength to Weight: Bending, points 44
21
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 1.8 to 2.7
0
Iron (Fe), % 0.9 to 1.4
58.7 to 65.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0.8 to 1.4
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.15 to 0.25
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0