MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. EN 2.4668 Nickel

2618A aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5
14
Fatigue Strength, MPa 120
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Shear Strength, MPa 260
840
Tensile Strength: Ultimate (UTS), MPa 440
1390
Tensile Strength: Yield (Proof), MPa 410
1160

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 230
980
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.4
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
3490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 41
46
Strength to Weight: Bending, points 44
33
Thermal Diffusivity, mm2/s 59
3.5
Thermal Shock Resistance, points 19
40

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 1.8 to 2.7
0 to 0.3
Iron (Fe), % 0.9 to 1.4
11.2 to 24.6
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0.8 to 1.4
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.15 to 0.25
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.6 to 1.2
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0