MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. Monel R-405

2618A aluminum belongs to the aluminum alloys classification, while Monel R-405 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is Monel R-405.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
160
Elongation at Break, % 4.5
9.1 to 39
Fatigue Strength, MPa 120
210 to 250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
62
Shear Strength, MPa 260
350 to 370
Tensile Strength: Ultimate (UTS), MPa 440
540 to 630
Tensile Strength: Yield (Proof), MPa 410
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 230
900
Melting Completion (Liquidus), °C 670
1350
Melting Onset (Solidus), °C 560
1300
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 150
23
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.4
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
49 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
120 to 370
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 47
21
Strength to Weight: Axial, points 41
17 to 20
Strength to Weight: Bending, points 44
17 to 18
Thermal Diffusivity, mm2/s 59
5.9
Thermal Shock Resistance, points 19
17 to 20

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 1.8 to 2.7
28 to 34
Iron (Fe), % 0.9 to 1.4
0 to 2.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Nickel (Ni), % 0.8 to 1.4
63 to 72
Silicon (Si), % 0.15 to 0.25
0 to 0.5
Sulfur (S), % 0
0.025 to 0.060
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0