MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. C24000 Brass

2618A aluminum belongs to the aluminum alloys classification, while C24000 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is C24000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 440
310 to 640

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 230
160
Melting Completion (Liquidus), °C 670
1000
Melting Onset (Solidus), °C 560
970
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
34

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 41
10 to 21
Strength to Weight: Bending, points 44
12 to 20
Thermal Diffusivity, mm2/s 59
43
Thermal Shock Resistance, points 19
10 to 22

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Copper (Cu), % 1.8 to 2.7
78.5 to 81.5
Iron (Fe), % 0.9 to 1.4
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0.8 to 1.4
0
Silicon (Si), % 0.15 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
18.2 to 21.5
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.2