MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. C26200 Brass

2618A aluminum belongs to the aluminum alloys classification, while C26200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 4.5
3.0 to 180
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Shear Strength, MPa 260
230 to 390
Tensile Strength: Ultimate (UTS), MPa 440
330 to 770
Tensile Strength: Yield (Proof), MPa 410
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 230
140
Melting Completion (Liquidus), °C 670
950
Melting Onset (Solidus), °C 560
920
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
62 to 1110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 41
11 to 26
Strength to Weight: Bending, points 44
13 to 23
Thermal Diffusivity, mm2/s 59
38
Thermal Shock Resistance, points 19
11 to 26

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Copper (Cu), % 1.8 to 2.7
67 to 70
Iron (Fe), % 0.9 to 1.4
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0.8 to 1.4
0
Silicon (Si), % 0.15 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
29.6 to 33
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.3