MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. C36500 Muntz Metal

2618A aluminum belongs to the aluminum alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 4.5
40
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
39
Shear Strength, MPa 260
270
Tensile Strength: Ultimate (UTS), MPa 440
400
Tensile Strength: Yield (Proof), MPa 410
160

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 230
120
Melting Completion (Liquidus), °C 670
900
Melting Onset (Solidus), °C 560
890
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
32

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 41
14
Strength to Weight: Bending, points 44
15
Thermal Diffusivity, mm2/s 59
40
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Copper (Cu), % 1.8 to 2.7
58 to 61
Iron (Fe), % 0.9 to 1.4
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0.8 to 1.4
0
Silicon (Si), % 0.15 to 0.25
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
37.5 to 41.8
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.4