MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. C54400 Bronze

2618A aluminum belongs to the aluminum alloys classification, while C54400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is C54400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 440
330 to 720

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 670
1000
Melting Onset (Solidus), °C 560
930
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 150
86
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
19
Electrical Conductivity: Equal Weight (Specific), % IACS 110
19

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1150
340

Common Calculations

Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 41
10 to 22
Strength to Weight: Bending, points 44
12 to 20
Thermal Diffusivity, mm2/s 59
26
Thermal Shock Resistance, points 19
12 to 26

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Copper (Cu), % 1.8 to 2.7
85.4 to 91.5
Iron (Fe), % 0.9 to 1.4
0 to 0.1
Lead (Pb), % 0
3.5 to 4.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0.8 to 1.4
0
Phosphorus (P), % 0
0.010 to 0.5
Silicon (Si), % 0.15 to 0.25
0
Tin (Sn), % 0
3.5 to 4.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
1.5 to 4.5
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.5