MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. C81400 Copper

2618A aluminum belongs to the aluminum alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 4.5
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 440
370
Tensile Strength: Yield (Proof), MPa 410
250

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 230
200
Melting Completion (Liquidus), °C 670
1090
Melting Onset (Solidus), °C 560
1070
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
60
Electrical Conductivity: Equal Weight (Specific), % IACS 110
61

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
36
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 41
11
Strength to Weight: Bending, points 44
13
Thermal Diffusivity, mm2/s 59
75
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 1.8 to 2.7
98.4 to 99.38
Iron (Fe), % 0.9 to 1.4
0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0.8 to 1.4
0
Silicon (Si), % 0.15 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.5