MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. N06002 Nickel

2618A aluminum belongs to the aluminum alloys classification, while N06002 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 4.5
41
Fatigue Strength, MPa 120
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 260
520
Tensile Strength: Ultimate (UTS), MPa 440
760
Tensile Strength: Yield (Proof), MPa 410
310

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 230
990
Melting Completion (Liquidus), °C 670
1360
Melting Onset (Solidus), °C 560
1260
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
9.9
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.4
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 41
25
Strength to Weight: Bending, points 44
22
Thermal Diffusivity, mm2/s 59
2.6
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 1.8 to 2.7
0
Iron (Fe), % 0.9 to 1.4
17 to 20
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0.8 to 1.4
42.3 to 54
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0