MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. S32053 Stainless Steel

2618A aluminum belongs to the aluminum alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 4.5
46
Fatigue Strength, MPa 120
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 260
510
Tensile Strength: Ultimate (UTS), MPa 440
730
Tensile Strength: Yield (Proof), MPa 410
330

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.4
6.1
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
270
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
25
Strength to Weight: Bending, points 44
22
Thermal Diffusivity, mm2/s 59
3.3
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 1.8 to 2.7
0
Iron (Fe), % 0.9 to 1.4
41.7 to 48.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0.8 to 1.4
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0