MakeItFrom.com
Menu (ESC)

2618A Aluminum vs. S40977 Stainless Steel

2618A aluminum belongs to the aluminum alloys classification, while S40977 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618A aluminum and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5
21
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 260
320
Tensile Strength: Ultimate (UTS), MPa 440
510
Tensile Strength: Yield (Proof), MPa 410
310

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 230
720
Melting Completion (Liquidus), °C 670
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
18
Strength to Weight: Bending, points 44
18
Thermal Diffusivity, mm2/s 59
6.7
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 91.5 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 1.8 to 2.7
0
Iron (Fe), % 0.9 to 1.4
83.9 to 89.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.5
Nickel (Ni), % 0.8 to 1.4
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.15 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0