MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. 5049 Aluminum

Both 5005 aluminum and 5049 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 64
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.1 to 23
2.0 to 18
Fatigue Strength, MPa 38 to 86
79 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 70 to 130
130 to 190
Tensile Strength: Ultimate (UTS), MPa 110 to 230
210 to 330
Tensile Strength: Yield (Proof), MPa 41 to 210
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 630
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 200
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
35
Electrical Conductivity: Equal Weight (Specific), % IACS 170
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
59 to 570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 11 to 23
22 to 34
Strength to Weight: Bending, points 19 to 31
29 to 39
Thermal Diffusivity, mm2/s 82
56
Thermal Shock Resistance, points 4.9 to 10
9.3 to 15

Alloy Composition

Aluminum (Al), % 97 to 99.5
94.7 to 97.9
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0.5 to 1.1
1.6 to 2.5
Manganese (Mn), % 0 to 0.2
0.5 to 1.1
Silicon (Si), % 0 to 0.3
0 to 0.4
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants