MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. AISI 302 Stainless Steel

5005 aluminum belongs to the aluminum alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 64
170 to 440
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 23
4.5 to 46
Fatigue Strength, MPa 38 to 86
210 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 70 to 130
400 to 830
Tensile Strength: Ultimate (UTS), MPa 110 to 230
580 to 1430
Tensile Strength: Yield (Proof), MPa 41 to 210
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
710
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
16
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Calomel Potential, mV -740
-70
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
140 to 3070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 23
21 to 51
Strength to Weight: Bending, points 19 to 31
20 to 36
Thermal Diffusivity, mm2/s 82
4.4
Thermal Shock Resistance, points 4.9 to 10
12 to 31

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
67.9 to 75
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants