MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. EN 1.6522 Steel

5005 aluminum belongs to the aluminum alloys classification, while EN 1.6522 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is EN 1.6522 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 64
150 to 190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 110 to 230
500 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1190
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 23
18 to 52
Strength to Weight: Bending, points 19 to 31
18 to 36
Thermal Diffusivity, mm2/s 82
10
Thermal Shock Resistance, points 4.9 to 10
15 to 43

Alloy Composition

Aluminum (Al), % 97 to 99.5
0 to 0.050
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0.35 to 0.7
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.7
96.6 to 98.5
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants