MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. Grade CW6MC Nickel

5005 aluminum belongs to the aluminum alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 23
28
Fatigue Strength, MPa 38 to 86
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 110 to 230
540
Tensile Strength: Yield (Proof), MPa 41 to 210
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 200
11
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.3
14
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
130
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 23
18
Strength to Weight: Bending, points 19 to 31
17
Thermal Diffusivity, mm2/s 82
2.8
Thermal Shock Resistance, points 4.9 to 10
15

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
20 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
0 to 5.0
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0