MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. C76200 Nickel Silver

5005 aluminum belongs to the aluminum alloys classification, while C76200 nickel silver belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is C76200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 110 to 230
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 630
980
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 200
45
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 170
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1190
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 11 to 23
13 to 27
Strength to Weight: Bending, points 19 to 31
14 to 23
Thermal Diffusivity, mm2/s 82
14
Thermal Shock Resistance, points 4.9 to 10
13 to 26

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
57 to 61
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0
11 to 13.5
Silicon (Si), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.25
24.2 to 32
Residuals, % 0
0 to 0.5