MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. C77400 Nickel Silver

5005 aluminum belongs to the aluminum alloys classification, while C77400 nickel silver belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is C77400 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 23
25
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
42
Shear Strength, MPa 70 to 130
360
Tensile Strength: Ultimate (UTS), MPa 110 to 230
570
Tensile Strength: Yield (Proof), MPa 41 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 650
810
Melting Onset (Solidus), °C 630
770
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
27
Electrical Conductivity: Equal Weight (Specific), % IACS 170
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
290
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 11 to 23
20
Strength to Weight: Bending, points 19 to 31
19
Thermal Shock Resistance, points 4.9 to 10
18

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
43 to 47
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.25
41.3 to 48
Residuals, % 0
0 to 0.5