MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. R58150 Titanium

5005 aluminum belongs to the aluminum alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 1.1 to 23
13
Fatigue Strength, MPa 38 to 86
330
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
52
Shear Strength, MPa 70 to 130
470
Tensile Strength: Ultimate (UTS), MPa 110 to 230
770
Tensile Strength: Yield (Proof), MPa 41 to 210
550

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 650
1760
Melting Onset (Solidus), °C 630
1700
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 24
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
48
Density, g/cm3 2.7
5.4
Embodied Carbon, kg CO2/kg material 8.3
31
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
94
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 11 to 23
40
Strength to Weight: Bending, points 19 to 31
35
Thermal Shock Resistance, points 4.9 to 10
48

Alloy Composition

Aluminum (Al), % 97 to 99.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
83.5 to 86
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0