MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. S44535 Stainless Steel

5005 aluminum belongs to the aluminum alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 64
170
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 23
28
Fatigue Strength, MPa 38 to 86
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 70 to 130
290
Tensile Strength: Ultimate (UTS), MPa 110 to 230
450
Tensile Strength: Yield (Proof), MPa 41 to 210
290

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 630
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
110
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 23
16
Strength to Weight: Bending, points 19 to 31
17
Thermal Diffusivity, mm2/s 82
5.6
Thermal Shock Resistance, points 4.9 to 10
15

Alloy Composition

Aluminum (Al), % 97 to 99.5
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 24
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.7
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0