MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. EN 1.4857 Stainless Steel

5005A aluminum belongs to the aluminum alloys classification, while EN 1.4857 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is EN 1.4857 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
150
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 21
6.7
Fatigue Strength, MPa 38 to 82
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 110 to 230
500
Tensile Strength: Yield (Proof), MPa 43 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 630
1320
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
28
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 24
18
Strength to Weight: Bending, points 19 to 31
18
Thermal Diffusivity, mm2/s 82
3.4
Thermal Shock Resistance, points 5.0 to 10
11

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.1
24 to 27
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
31.4 to 41.7
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0