MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. EN 1.8898 Steel

5005A aluminum belongs to the aluminum alloys classification, while EN 1.8898 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 21
18
Fatigue Strength, MPa 38 to 82
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 71 to 130
370
Tensile Strength: Ultimate (UTS), MPa 110 to 230
600
Tensile Strength: Yield (Proof), MPa 43 to 210
490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1190
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
100
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 24
21
Strength to Weight: Bending, points 19 to 31
20
Thermal Diffusivity, mm2/s 82
13
Thermal Shock Resistance, points 5.0 to 10
18

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0.020 to 0.060
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
96.7 to 99.98
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0