MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. EN AC-45300 Aluminum

Both 5005A aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
94 to 120
Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 21
1.0 to 2.8
Fatigue Strength, MPa 38 to 82
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 110 to 230
220 to 290
Tensile Strength: Yield (Proof), MPa 43 to 210
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
630
Melting Onset (Solidus), °C 630
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 200
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
36
Electrical Conductivity: Equal Weight (Specific), % IACS 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 12 to 24
23 to 29
Strength to Weight: Bending, points 19 to 31
30 to 35
Thermal Diffusivity, mm2/s 82
60
Thermal Shock Resistance, points 5.0 to 10
10 to 13

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
90.2 to 94.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
1.0 to 1.5
Iron (Fe), % 0 to 0.45
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.7 to 1.1
0.35 to 0.65
Manganese (Mn), % 0 to 0.15
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.3
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.15
Residuals, % 0
0 to 0.15