MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. Grade 4 Titanium

5005A aluminum belongs to the aluminum alloys classification, while grade 4 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is grade 4 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
200
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 21
17
Fatigue Strength, MPa 38 to 82
340
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Shear Strength, MPa 71 to 130
390
Tensile Strength: Ultimate (UTS), MPa 110 to 230
640
Tensile Strength: Yield (Proof), MPa 43 to 210
530

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 660
1660
Melting Onset (Solidus), °C 630
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 200
19
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 170
6.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
31
Embodied Energy, MJ/kg 150
500
Embodied Water, L/kg 1190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
100
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 12 to 24
40
Strength to Weight: Bending, points 19 to 31
37
Thermal Diffusivity, mm2/s 82
7.6
Thermal Shock Resistance, points 5.0 to 10
46

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.45
0 to 0.5
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
98.6 to 100
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4