MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. C62500 Bronze

5005A aluminum belongs to the aluminum alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 21
1.0
Fatigue Strength, MPa 38 to 82
460
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Shear Strength, MPa 71 to 130
410
Tensile Strength: Ultimate (UTS), MPa 110 to 230
690
Tensile Strength: Yield (Proof), MPa 43 to 210
410

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 180
230
Melting Completion (Liquidus), °C 660
1050
Melting Onset (Solidus), °C 630
1050
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 200
47
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
10
Electrical Conductivity: Equal Weight (Specific), % IACS 170
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1190
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
750
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 12 to 24
24
Strength to Weight: Bending, points 19 to 31
22
Thermal Diffusivity, mm2/s 82
13
Thermal Shock Resistance, points 5.0 to 10
24

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
12.5 to 13.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
78.5 to 84
Iron (Fe), % 0 to 0.45
3.5 to 5.5
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Silicon (Si), % 0 to 0.3
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5