MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. C92300 Bronze

5005A aluminum belongs to the aluminum alloys classification, while C92300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is C92300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 21
19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 110 to 230
300
Tensile Strength: Yield (Proof), MPa 43 to 210
140

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
1000
Melting Onset (Solidus), °C 630
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 200
75
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
12
Electrical Conductivity: Equal Weight (Specific), % IACS 170
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
47
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
86
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 12 to 24
9.5
Strength to Weight: Bending, points 19 to 31
11
Thermal Diffusivity, mm2/s 82
23
Thermal Shock Resistance, points 5.0 to 10
11

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.050
85 to 89
Iron (Fe), % 0 to 0.45
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 0 to 0.2
2.5 to 5.0
Residuals, % 0
0 to 0.7