MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. S21900 Stainless Steel

5005A aluminum belongs to the aluminum alloys classification, while S21900 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is S21900 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
220
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 21
50
Fatigue Strength, MPa 38 to 82
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 71 to 130
510
Tensile Strength: Ultimate (UTS), MPa 110 to 230
710
Tensile Strength: Yield (Proof), MPa 43 to 210
390

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 630
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
300
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 12 to 24
26
Strength to Weight: Bending, points 19 to 31
23
Thermal Diffusivity, mm2/s 82
3.8
Thermal Shock Resistance, points 5.0 to 10
15

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
19 to 21.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
59.4 to 67.4
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0