MakeItFrom.com
Menu (ESC)

5005A Aluminum vs. S32053 Stainless Steel

5005A aluminum belongs to the aluminum alloys classification, while S32053 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5005A aluminum and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 29 to 64
190
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 21
46
Fatigue Strength, MPa 38 to 82
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 71 to 130
510
Tensile Strength: Ultimate (UTS), MPa 110 to 230
730
Tensile Strength: Yield (Proof), MPa 43 to 210
330

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.1
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1190
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0 to 19
270
Resilience: Unit (Modulus of Resilience), kJ/m3 14 to 310
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 24
25
Strength to Weight: Bending, points 19 to 31
22
Thermal Diffusivity, mm2/s 82
3.3
Thermal Shock Resistance, points 5.0 to 10
16

Alloy Composition

Aluminum (Al), % 97.5 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
22 to 24
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.45
41.7 to 48.8
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0