MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. 515.0 Aluminum

Both 5010 aluminum and 515.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is 515.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 1.1 to 23
10
Fatigue Strength, MPa 35 to 83
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 64 to 120
190
Tensile Strength: Ultimate (UTS), MPa 100 to 210
280

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 630
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Expansion, µm/m-K 23
23

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1120

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 10 to 22
30
Strength to Weight: Bending, points 18 to 29
36
Thermal Shock Resistance, points 4.5 to 9.4
13

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
93.6 to 96.6
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 1.3
Magnesium (Mg), % 0.2 to 0.6
2.5 to 4.0
Manganese (Mn), % 0.1 to 0.3
0.4 to 0.6
Silicon (Si), % 0 to 0.4
0.5 to 10
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0
0 to 0.15