MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. EN 1.4646 Stainless Steel

5010 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
220
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 23
34
Fatigue Strength, MPa 35 to 83
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 64 to 120
500
Tensile Strength: Ultimate (UTS), MPa 100 to 210
750
Tensile Strength: Yield (Proof), MPa 38 to 190
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 630
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 20
220
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 270
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
27
Strength to Weight: Bending, points 18 to 29
24
Thermal Shock Resistance, points 4.5 to 9.4
16

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.15
17 to 19
Copper (Cu), % 0 to 0.25
1.5 to 3.0
Iron (Fe), % 0 to 0.7
59 to 67.3
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.1 to 0.3
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0