MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. EN 1.4869 Casting Alloy

5010 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 1.1 to 23
5.7
Fatigue Strength, MPa 35 to 83
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 100 to 210
540
Tensile Strength: Yield (Proof), MPa 38 to 190
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1200
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 630
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 200
10
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 20
26
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 270
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 10 to 22
18
Strength to Weight: Bending, points 18 to 29
17
Thermal Diffusivity, mm2/s 82
2.6
Thermal Shock Resistance, points 4.5 to 9.4
14

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0 to 0.15
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.7
11.4 to 23.6
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.1 to 0.3
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0