MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. Grade C-3 Titanium

5010 aluminum belongs to the aluminum alloys classification, while grade C-3 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is grade C-3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
200
Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 1.1 to 23
13
Fatigue Strength, MPa 35 to 83
260
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 100 to 210
500
Tensile Strength: Yield (Proof), MPa 38 to 190
430

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 630
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 200
21
Thermal Expansion, µm/m-K 23
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 150
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.2
31
Embodied Energy, MJ/kg 150
510
Embodied Water, L/kg 1190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 20
65
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 270
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 10 to 22
31
Strength to Weight: Bending, points 18 to 29
31
Thermal Diffusivity, mm2/s 82
8.5
Thermal Shock Resistance, points 4.5 to 9.4
39

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.1 to 0.3
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.1
98.8 to 100
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.4