MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. S31254 Stainless Steel

5010 aluminum belongs to the aluminum alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
190
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 23
40
Fatigue Strength, MPa 35 to 83
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 64 to 120
490
Tensile Strength: Ultimate (UTS), MPa 100 to 210
720
Tensile Strength: Yield (Proof), MPa 38 to 190
330

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.5
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 20
240
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 270
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 10 to 22
25
Strength to Weight: Bending, points 18 to 29
22
Thermal Diffusivity, mm2/s 82
3.8
Thermal Shock Resistance, points 4.5 to 9.4
15

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
19.5 to 20.5
Copper (Cu), % 0 to 0.25
0.5 to 1.0
Iron (Fe), % 0 to 0.7
51.4 to 56.3
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.1 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0