MakeItFrom.com
Menu (ESC)

5010 Aluminum vs. S32050 Stainless Steel

5010 aluminum belongs to the aluminum alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5010 aluminum and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 27 to 62
220
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 1.1 to 23
46
Fatigue Strength, MPa 35 to 83
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 64 to 120
540
Tensile Strength: Ultimate (UTS), MPa 100 to 210
770
Tensile Strength: Yield (Proof), MPa 38 to 190
370

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1190
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 20
290
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 270
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 10 to 22
27
Strength to Weight: Bending, points 18 to 29
23
Thermal Diffusivity, mm2/s 82
3.3
Thermal Shock Resistance, points 4.5 to 9.4
17

Alloy Composition

Aluminum (Al), % 97.1 to 99.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
22 to 24
Copper (Cu), % 0 to 0.25
0 to 0.4
Iron (Fe), % 0 to 0.7
43.1 to 51.8
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.1 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0