MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. 512.0 Aluminum

Both 5019 aluminum and 512.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is 512.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 2.2 to 18
2.0
Fatigue Strength, MPa 100 to 160
58
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 280 to 360
130
Tensile Strength: Yield (Proof), MPa 120 to 300
83

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 540
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
38
Electrical Conductivity: Equal Weight (Specific), % IACS 98
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
50
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 38
14
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 52
60
Thermal Shock Resistance, points 13 to 16
6.1

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
90.6 to 95.1
Chromium (Cr), % 0 to 0.2
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.5
0 to 0.6
Magnesium (Mg), % 4.5 to 5.6
3.5 to 4.5
Manganese (Mn), % 0.1 to 0.6
0 to 0.8
Silicon (Si), % 0 to 0.4
1.4 to 2.2
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.35
Residuals, % 0
0 to 0.15