MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. 518.0 Aluminum

Both 5019 aluminum and 518.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 2.2 to 18
5.0
Fatigue Strength, MPa 100 to 160
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 170 to 210
200
Tensile Strength: Ultimate (UTS), MPa 280 to 360
310
Tensile Strength: Yield (Proof), MPa 120 to 300
190

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 540
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
98
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
24
Electrical Conductivity: Equal Weight (Specific), % IACS 98
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
9.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
14
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 38
32
Strength to Weight: Bending, points 35 to 42
38
Thermal Diffusivity, mm2/s 52
40
Thermal Shock Resistance, points 13 to 16
14

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
88.1 to 92.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 1.8
Magnesium (Mg), % 4.5 to 5.6
7.5 to 8.5
Manganese (Mn), % 0.1 to 0.6
0 to 0.35
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.4
0 to 0.35
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.15
Residuals, % 0
0 to 0.25