MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. 5652 Aluminum

Both 5019 aluminum and 5652 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 2.2 to 18
6.8 to 25
Fatigue Strength, MPa 100 to 160
60 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 210
110 to 170
Tensile Strength: Ultimate (UTS), MPa 280 to 360
190 to 290
Tensile Strength: Yield (Proof), MPa 120 to 300
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 540
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
35
Electrical Conductivity: Equal Weight (Specific), % IACS 98
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 38
20 to 30
Strength to Weight: Bending, points 35 to 42
27 to 36
Thermal Diffusivity, mm2/s 52
57
Thermal Shock Resistance, points 13 to 16
8.4 to 13

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
95.8 to 97.7
Chromium (Cr), % 0 to 0.2
0.15 to 0.35
Copper (Cu), % 0 to 0.1
0 to 0.040
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 4.5 to 5.6
2.2 to 2.8
Manganese (Mn), % 0.1 to 0.6
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants