MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. EN 1.4029 Stainless Steel

5019 aluminum belongs to the aluminum alloys classification, while EN 1.4029 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
10 to 20
Fatigue Strength, MPa 100 to 160
270 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 210
440 to 550
Tensile Strength: Ultimate (UTS), MPa 280 to 360
700 to 930
Tensile Strength: Yield (Proof), MPa 120 to 300
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
440 to 1410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 29 to 38
25 to 33
Strength to Weight: Bending, points 35 to 42
23 to 27
Thermal Diffusivity, mm2/s 52
8.1
Thermal Shock Resistance, points 13 to 16
26 to 34

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0 to 0.2
12 to 13.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
82.8 to 87.6
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0.15 to 0.25
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants