MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. EN AC-21000 Aluminum

Both 5019 aluminum and EN AC-21000 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 2.2 to 18
6.7
Fatigue Strength, MPa 100 to 160
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 280 to 360
340
Tensile Strength: Yield (Proof), MPa 120 to 300
240

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 540
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
34
Electrical Conductivity: Equal Weight (Specific), % IACS 98
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
21
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 29 to 38
32
Strength to Weight: Bending, points 35 to 42
36
Thermal Diffusivity, mm2/s 52
49
Thermal Shock Resistance, points 13 to 16
15

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
93.4 to 95.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
4.2 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.5 to 5.6
0.15 to 0.35
Manganese (Mn), % 0.1 to 0.6
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.1