MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. EN AC-51200 Aluminum

Both 5019 aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 2.2 to 18
1.1
Fatigue Strength, MPa 100 to 160
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 280 to 360
220
Tensile Strength: Yield (Proof), MPa 120 to 300
150

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
92
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
22
Electrical Conductivity: Equal Weight (Specific), % IACS 98
74

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.0
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 38
24
Strength to Weight: Bending, points 35 to 42
31
Thermal Diffusivity, mm2/s 52
39
Thermal Shock Resistance, points 13 to 16
10

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
84.5 to 92
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 4.5 to 5.6
8.0 to 10.5
Manganese (Mn), % 0.1 to 0.6
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15