MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Grade 28 Titanium

5019 aluminum belongs to the aluminum alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.2 to 18
11 to 17
Fatigue Strength, MPa 100 to 160
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 170 to 210
420 to 590
Tensile Strength: Ultimate (UTS), MPa 280 to 360
690 to 980
Tensile Strength: Yield (Proof), MPa 120 to 300
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 540
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 130
8.3
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 9.0
37
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 29 to 38
43 to 61
Strength to Weight: Bending, points 35 to 42
39 to 49
Thermal Diffusivity, mm2/s 52
3.4
Thermal Shock Resistance, points 13 to 16
47 to 66

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.2
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4

Comparable Variants