MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Grade M30H Nickel

5019 aluminum belongs to the aluminum alloys classification, while grade M30H nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is grade M30H nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
160
Elongation at Break, % 2.2 to 18
11
Fatigue Strength, MPa 100 to 160
230
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 280 to 360
770
Tensile Strength: Yield (Proof), MPa 120 to 300
470

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1250
Melting Onset (Solidus), °C 540
1200
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 9.0
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
75
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
700
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 29 to 38
25
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 52
5.7
Thermal Shock Resistance, points 13 to 16
27

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
27 to 33
Iron (Fe), % 0 to 0.5
0 to 3.5
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.5
Nickel (Ni), % 0
57.9 to 70.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
2.7 to 3.7
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0