MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Nickel 600

5019 aluminum belongs to the aluminum alloys classification, while nickel 600 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
3.4 to 35
Fatigue Strength, MPa 100 to 160
220 to 300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 170 to 210
430 to 570
Tensile Strength: Ultimate (UTS), MPa 280 to 360
650 to 990
Tensile Strength: Yield (Proof), MPa 120 to 300
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.0
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
190 to 1490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 29 to 38
21 to 32
Strength to Weight: Bending, points 35 to 42
20 to 26
Thermal Diffusivity, mm2/s 52
3.6
Thermal Shock Resistance, points 13 to 16
19 to 29

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.2
14 to 17
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.5
6.0 to 10
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 0
72 to 80
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants