MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Nickel 601

5019 aluminum belongs to the aluminum alloys classification, while nickel 601 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is nickel 601.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.2 to 18
10 to 38
Fatigue Strength, MPa 100 to 160
220 to 380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 210
440 to 530
Tensile Strength: Ultimate (UTS), MPa 280 to 360
660 to 890
Tensile Strength: Yield (Proof), MPa 120 to 300
290 to 800

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
86 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
210 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 29 to 38
22 to 30
Strength to Weight: Bending, points 35 to 42
20 to 25
Thermal Diffusivity, mm2/s 52
2.8
Thermal Shock Resistance, points 13 to 16
17 to 23

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
1.0 to 1.7
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.2
21 to 25
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0 to 0.5
7.7 to 20
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 0
58 to 63
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants