MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. Nickel 80A

5019 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.2 to 18
22
Fatigue Strength, MPa 100 to 160
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 170 to 210
660
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1040
Tensile Strength: Yield (Proof), MPa 120 to 300
710

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 540
1310
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.0
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 29 to 38
35
Strength to Weight: Bending, points 35 to 42
27
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 13 to 16
31

Alloy Composition

Aluminum (Al), % 91.5 to 95.3
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.2
18 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 4.5 to 5.6
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
1.8 to 2.7
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0